论文标题

紧凑型符号系统的多个相变

Multiple phase transitions on compact symbolic systems

论文作者

Kucherenko, Tamara, Quas, Anthony, Wolf, Christian

论文摘要

令$ ϕ:x \ to \ mathbb r $是有限字母上的符号动力学系统$ t:x \ x $相关的连续潜力。引入一个参数$β> 0 $(解释为反温度),我们研究了压力函数的规律性$β\ mapsto p _ {\ rm top}(βD}(βϕ)$在$ [α,\ infty)$上,$α> 0 $。我们说,如果压力函数$ p _ {\ rm top} $在$β_0$的情况下,$β_0$的相变为$β_0$。这相当于潜在的$ β_0ϕ $具有具有不同熵的两个(Ergodic)平衡状态。对于任何$α> 0 $,以及$ [α,\ infty)$包含的任何实数$(β_n)$的任何增加的顺序,我们构建了一个潜在的$ ϕ $,其相位过渡以$ [α,\ infty)$精确地发生在$β_N$中。特别是,我们获得了具有一组无限的相变的潜力。

Let $ϕ:X\to \mathbb R$ be a continuous potential associated with a symbolic dynamical system $T:X\to X$ over a finite alphabet. Introducing a parameter $β>0$ (interpreted as the inverse temperature) we study the regularity of the pressure function $β\mapsto P_{\rm top}(βϕ)$ on an interval $[α,\infty)$ with $α>0$. We say that $ϕ$ has a phase transition at $β_0$ if the pressure function $P_{\rm top}(βϕ)$ is not differentiable at $β_0$. This is equivalent to the condition that the potential $β_0ϕ$ has two (ergodic) equilibrium states with distinct entropies. For any $α>0$ and any increasing sequence of real numbers $(β_n)$ contained in $[α,\infty)$, we construct a potential $ϕ$ whose phase transitions in $[α,\infty)$ occur precisely at the $β_n$'s. In particular, we obtain a potential which has a countably infinite set of phase transitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源