论文标题

DDOSNET:用于检测网络攻击的深度学习模型

DDoSNet: A Deep-Learning Model for Detecting Network Attacks

论文作者

Elsayed, Mahmoud Said, Le-Khac, Nhien-An, Dev, Soumyabrata, Jurcut, Anca Delia

论文摘要

软件定义的网络(SDN)是一个新兴的范式,近年来进化以解决传统网络中的弱点。通过将控制平面与数据平面分离来实现的SDN的重要特征,促进了网络管理并允许网络有效地编程。但是,新的体系结构可能会受到几种导致资源耗尽的攻击,并防止SDN控制器支持合法用户。这些攻击之一如今正在显着增长,是分布式拒绝服务(DDOS)攻击。 DDOS攻击对崩溃网络资源有很大影响,使目标服务器无法支持有效的用户。当前的方法使用标准数据集在SDN网络中针对DDOS攻击的入侵检测部署了机器学习(ML)。但是,这些方法遭受了几个缺点,并且使用的数据集不包含最近的攻击模式 - 因此缺乏攻击多样性。 在本文中,我们提出了DDOSNET,这是针对SDN环境中DDOS攻击的入侵检测系统。我们的方法基于深度学习(DL)技术,将复发性神经网络(RNN)与自动编码器相结合。我们使用新发布的数据集CICDDOS2019评估了我们的模型,该数据集包含各种DDOS攻击,并解决了现有当前数据集的差距。与其他基准测试方法相比,我们获得了攻击检测的显着改善。因此,我们的模型对确保这些网络有充分的信心。

Software-Defined Networking (SDN) is an emerging paradigm, which evolved in recent years to address the weaknesses in traditional networks. The significant feature of the SDN, which is achieved by disassociating the control plane from the data plane, facilitates network management and allows the network to be efficiently programmable. However, the new architecture can be susceptible to several attacks that lead to resource exhaustion and prevent the SDN controller from supporting legitimate users. One of these attacks, which nowadays is growing significantly, is the Distributed Denial of Service (DDoS) attack. DDoS attack has a high impact on crashing the network resources, making the target servers unable to support the valid users. The current methods deploy Machine Learning (ML) for intrusion detection against DDoS attacks in the SDN network using the standard datasets. However, these methods suffer several drawbacks, and the used datasets do not contain the most recent attack patterns - hence, lacking in attack diversity. In this paper, we propose DDoSNet, an intrusion detection system against DDoS attacks in SDN environments. Our method is based on Deep Learning (DL) technique, combining the Recurrent Neural Network (RNN) with autoencoder. We evaluate our model using the newly released dataset CICDDoS2019, which contains a comprehensive variety of DDoS attacks and addresses the gaps of the existing current datasets. We obtain a significant improvement in attack detection, as compared to other benchmarking methods. Hence, our model provides great confidence in securing these networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源