论文标题

黑盒分类器的生成因果解释

Generative causal explanations of black-box classifiers

论文作者

O'Shaughnessy, Matthew, Canal, Gregory, Connor, Marissa, Davenport, Mark, Rozell, Christopher

论文摘要

我们开发了一种基于数据的低维表示黑盒分类器的因果事件后解释的方法。这种解释是因果关系,因为不断变化的潜在因素会导致分类器输出统计数据的变化。为了构建这些解释,我们设计了一个学习框架,该框架利用了因果影响的生成模型和信息理论度量。我们的目标功能鼓励生成模型忠实地代表数据分布和潜在因素,以对分类器输出产生巨大的因果影响。我们的方法同时学习全球和局部解释,与任何接受类概率和梯度的分类器兼容,并且不需要标记的属性或因果结构的知识。使用经过精心控制的测试用例,我们提供直觉,以阐明我们目标的功能。然后,我们在图像识别任务上演示了我们方法的实际实用性。

We develop a method for generating causal post-hoc explanations of black-box classifiers based on a learned low-dimensional representation of the data. The explanation is causal in the sense that changing learned latent factors produces a change in the classifier output statistics. To construct these explanations, we design a learning framework that leverages a generative model and information-theoretic measures of causal influence. Our objective function encourages both the generative model to faithfully represent the data distribution and the latent factors to have a large causal influence on the classifier output. Our method learns both global and local explanations, is compatible with any classifier that admits class probabilities and a gradient, and does not require labeled attributes or knowledge of causal structure. Using carefully controlled test cases, we provide intuition that illuminates the function of our objective. We then demonstrate the practical utility of our method on image recognition tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源