论文标题

Nethack学习环境

The NetHack Learning Environment

论文作者

Küttler, Heinrich, Nardelli, Nantas, Miller, Alexander H., Raileanu, Roberta, Selvatici, Marco, Grefenstette, Edward, Rocktäschel, Tim

论文摘要

加固学习(RL)算法的进展与测试当前方法限制的具有挑战性的环境的发展。尽管现有的RL环境要么很复杂,要么基于快速模拟,但它们很少两者兼而有之。在这里,我们介绍了Nethack学习环境(NLE),这是一种基于流行的基于基于单人的Roguelike的Roguelike Game Nethack的RL研究的可扩展,程序生成,随机,丰富且具有挑战性的环境。我们认为,Nethack足够复杂,可以长期研究诸如探索,计划,技能获取和语言条件的RL等问题,同时大大减少了收集大量经验所需的计算资源。我们将NLE及其任务套件与现有替代方案进行比较,并讨论为什么它是测试RL剂的鲁棒性和系统概括的理想媒介。我们使用分布式的RL基线和随机网络蒸馏探索以及对环境中训练的各种代理的定性分析,在游戏的早期阶段展示了游戏的经验成功。 NLE是https://github.com/facebookresearch/nle的开源。

Progress in Reinforcement Learning (RL) algorithms goes hand-in-hand with the development of challenging environments that test the limits of current methods. While existing RL environments are either sufficiently complex or based on fast simulation, they are rarely both. Here, we present the NetHack Learning Environment (NLE), a scalable, procedurally generated, stochastic, rich, and challenging environment for RL research based on the popular single-player terminal-based roguelike game, NetHack. We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL, while dramatically reducing the computational resources required to gather a large amount of experience. We compare NLE and its task suite to existing alternatives, and discuss why it is an ideal medium for testing the robustness and systematic generalization of RL agents. We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration, alongside qualitative analysis of various agents trained in the environment. NLE is open source at https://github.com/facebookresearch/nle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源