论文标题
Phishgan:均匀攻击的数据增强和识别
PhishGAN: Data Augmentation and Identification of Homoglpyh Attacks
论文作者
论文摘要
同质攻击是黑客进行网络钓鱼的一种常见技术。视觉上与实际相似的域名或链接是通过PunyCode创建的,以混淆攻击,使受害者更容易受到网络钓鱼的影响。例如,受害者可能将“ | inkedin.com”误认为是“ linkedin.com”,在此过程中,将个人详细信息泄露到假网站。当前的最新状态(SOTA)通常使用字符串比较算法(例如Levenshtein距离),这些算法在计算上很重。原因之一是缺乏公开可用的数据集,从而阻碍了更先进的机器学习(ML)模型的培训。此外,没有一个字体能够正确地呈现所有类型的PunyCode,这对创建对任何特定字体的数据集的创建构成了重大挑战。加上大量的Internet域在创建可以捕获所有可能变化的数据集方面构成了一个挑战。在这里,我们展示了有条件的生成对抗网络(GAN),Phishgan如何用于生成象形文字的图像,该图像以非HomoglpyH输入文本图像为条件。需要对当前SOTA进行实际更改,以促进产生更多不同同质文本的图像。我们还展示了如何使用Phishgan与同型标识符(HI)模型一起识别同符文试图模仿的域的工作流程。此外,我们展示了Phishgan在飞行中生成数据集的能力如何促进网络安全系统的快速适应,以检测新的威胁时出现。
Homoglyph attacks are a common technique used by hackers to conduct phishing. Domain names or links that are visually similar to actual ones are created via punycode to obfuscate the attack, making the victim more susceptible to phishing. For example, victims may mistake "|inkedin.com" for "linkedin.com" and in the process, divulge personal details to the fake website. Current State of The Art (SOTA) typically make use of string comparison algorithms (e.g. Levenshtein Distance), which are computationally heavy. One reason for this is the lack of publicly available datasets thus hindering the training of more advanced Machine Learning (ML) models. Furthermore, no one font is able to render all types of punycode correctly, posing a significant challenge to the creation of a dataset that is unbiased toward any particular font. This coupled with the vast number of internet domains pose a challenge in creating a dataset that can capture all possible variations. Here, we show how a conditional Generative Adversarial Network (GAN), PhishGAN, can be used to generate images of hieroglyphs, conditioned on non-homoglpyh input text images. Practical changes to current SOTA were required to facilitate the generation of more varied homoglyph text-based images. We also demonstrate a workflow of how PhishGAN together with a Homoglyph Identifier (HI) model can be used to identify the domain the homoglyph was trying to imitate. Furthermore, we demonstrate how PhishGAN's ability to generate datasets on the fly facilitate the quick adaptation of cybersecurity systems to detect new threats as they emerge.