论文标题

PECAIQR:一种应用于Covid-19的传染病模型

PECAIQR: A Model for Infectious Disease Applied to the Covid-19 Epidemic

论文作者

Bao, Richard, Chen, August, Gowda, Jethin, Mudide, Shiva

论文摘要

COVID-19大流行清楚地表明需要改善现代多元时间序列预测模型。当前对未来每日死亡(尤其是医院资源使用情况)的最新预测具有不可接受的置信区间。政策制定者和医院需要准确的预测,就可以通过立法和分配资源做出明智的决定。我们使用了有关每日死亡和人口统计数据的县级数据来预测未来的死亡。我们将流行病学模型扩展到了一个新型模型,我们称为PecaiQR模型。它通过考虑到美国实施的部分隔离的后果,为幼稚的Sir模型添加了几个新变量和参数。我们将数据拟合到具有数值集成的模型参数。由于参数空间和参数的非恒定性质的拟合性变性,我们开发了几种方法来优化我们的拟合度,例如在数据尾部进行培训和对特定政策制度的培训。我们使用交叉验证在县级调整我们的超级参数,并为将来的每日死亡生成CDF。对于截至5月25日的培训数据进行的预测,我们在14天的预测中始终获得平均弹球损失评分为0.096。我们终于提出了模型中可能的实用性途径的例子。过去,我们在过去的1个月窗口上产生了更长的时间预测,预测在县需要多少医疗资源,例如呼吸机和ICU床,并评估我们模型在其他国家 /地区的功效。

The Covid-19 pandemic has made clear the need to improve modern multivariate time-series forecasting models. Current state of the art predictions of future daily deaths and, especially, hospital resource usage have confidence intervals that are unacceptably wide. Policy makers and hospitals require accurate forecasts to make informed decisions on passing legislation and allocating resources. We used US county-level data on daily deaths and population statistics to forecast future deaths. We extended the SIR epidemiological model to a novel model we call the PECAIQR model. It adds several new variables and parameters to the naive SIR model by taking into account the ramifications of the partial quarantining implemented in the US. We fitted data to the model parameters with numerical integration. Because of the fit degeneracy in parameter space and non-constant nature of the parameters, we developed several methods to optimize our fit, such as training on the data tail and training on specific policy regimes. We use cross-validation to tune our hyper parameters at the county level and generate a CDF for future daily deaths. For predictions made from training data up to May 25th, we consistently obtained an averaged pinball loss score of 0.096 on a 14 day forecast. We finally present examples of possible avenues for utility from our model. We generate longer-time horizon predictions over various 1-month windows in the past, forecast how many medical resources such as ventilators and ICU beds will be needed in counties, and evaluate the efficacy of our model in other countries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源