论文标题

可证明的非凸正同化回归的可融合工作集算法

Provably Convergent Working Set Algorithm for Non-Convex Regularized Regression

论文作者

Rakotomamonjy, Alain, Flamary, Rémi, Gasso, Gilles, Salmon, Joseph

论文摘要

由于其统计特性,非凸稀疏的正则化器引起了极大的兴趣,即从高维数据中估算稀疏线性模型。鉴于该解决方案是稀疏的,对于加速收敛,一种工作集策略通过迭代算法来解决优化问题,通过分解变量的数量以优化,直到识别解决方案支持。尽管这些方法已得到充分研究并在理论上支持了凸正规化器,但本文提出了一种具有收敛保证的非凸稀疏正规化器的工作集算法。该算法称为Fireworks,是基于对残差几何形状的最初的双重方法的非凸重新印度的重新印象。我们的理论保证源自目标函数的下限,在两个内部求解器迭代之间减小,并显示了整个问题的固定点的收敛性。更重要的是,我们还表明,即使在内部求解器不精确的情况下,在跨迭代误差的足够衰减下也保留了收敛性。我们的实验结果表明,使用我们的工作集策略与整个问题解决方案相比,用于座位坐标下降或近端梯度求解器时,计算的增益很高。

Owing to their statistical properties, non-convex sparse regularizers have attracted much interest for estimating a sparse linear model from high dimensional data. Given that the solution is sparse, for accelerating convergence, a working set strategy addresses the optimization problem through an iterative algorithm by incre-menting the number of variables to optimize until the identification of the solution support. While those methods have been well-studied and theoretically supported for convex regularizers, this paper proposes a working set algorithm for non-convex sparse regularizers with convergence guarantees. The algorithm, named FireWorks, is based on a non-convex reformulation of a recent primal-dual approach and leverages on the geometry of the residuals. Our theoretical guarantees derive from a lower bound of the objective function decrease between two inner solver iterations and shows the convergence to a stationary point of the full problem. More importantly, we also show that convergence is preserved even when the inner solver is inexact, under sufficient decay of the error across iterations. Our experimental results demonstrate high computational gain when using our working set strategy compared to the full problem solver for both block-coordinate descent or a proximal gradient solver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源