论文标题

学习图像分类的阶级关系

Learning Interclass Relations for Image Classification

论文作者

Raouf, Muhamedrahimov, Amir, Bar, Ayelet, Akselrod-Ballin

论文摘要

在标准分类中,我们通常将类别视为独立于单位的类别。但是,在许多问题中,我们将忽略类别之间存在的自然关系,这些自然关系通常由潜在的生物学或物理过程决定。在这项工作中,我们提出了分类问题的新颖表述,基于认识到,独立的假设是导致更多培训数据的要求的限制因素。首先,我们建议通过将有关问题特定阶级关系的知识重新引入培训过程,以减少数据需求。其次,我们提出了一种一般方法,以共同学习可以隐式编码自然阶级关系的分类标签表示形式,从而减轻了对并非总是可用的强大先验假设的需求。我们在医学图像的领域中证明了这一点,其中获取大量标记的数据并不微不足道。具体而言,我们的实验显示了这种方法在CT图像中静脉对比增强阶段的分类中的优势,该静脉对比度增强阶段封装了多个有趣的类间关系。

In standard classification, we typically treat class categories as independent of one-another. In many problems, however, we would be neglecting the natural relations that exist between categories, which are often dictated by an underlying biological or physical process. In this work, we propose novel formulations of the classification problem, based on a realization that the assumption of class-independence is a limiting factor that leads to the requirement of more training data. First, we propose manual ways to reduce our data needs by reintroducing knowledge about problem-specific interclass relations into the training process. Second, we propose a general approach to jointly learn categorical label representations that can implicitly encode natural interclass relations, alleviating the need for strong prior assumptions, which are not always available. We demonstrate this in the domain of medical images, where access to large amounts of labelled data is not trivial. Specifically, our experiments show the advantages of this approach in the classification of Intravenous Contrast enhancement phases in CT images, which encapsulate multiple interesting inter-class relations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源