论文标题
深度学习增强了个人核旋转检测
Deep learning enhanced individual nuclear-spin detection
论文作者
论文摘要
使用单个电子旋转检测核自旋已为量子传感和量子信息处理提供了新的机会。原则实验证明了核旋转样品和受控多数寄存器的原子级成像。但是,要对更复杂的样品进行图像并实现大规模的量子处理器,需要有效,自动表征旋转系统的计算机化方法。在这里,我们实现了一种深度学习模型,用于使用钻石中的单氮 - 胶菌(NV)中心的电子自旋自动识别核自旋。基于神经网络算法,我们为高度非线性光谱开发了噪声恢复程序和训练序列。我们将这些方法应用于实验证明对单个NV中心周围31次核自旋的快速鉴定,并准确确定超精细参数。我们的方法可以扩展到较大的自旋系统,并适用于广泛的电子核相互作用强度。这些结果可以有效地对复杂的自旋样品进行有效的成像,并自动表征大型自旋量表。
The detection of nuclear spins using individual electron spins has enabled new opportunities in quantum sensing and quantum information processing. Proof-of-principle experiments have demonstrated atomic-scale imaging of nuclear-spin samples and controlled multi-qubit registers. However, to image more complex samples and to realize larger-scale quantum processors, computerized methods that efficiently and automatically characterize spin systems are required. Here, we realize a deep learning model for automatic identification of nuclear spins using the electron spin of single nitrogen-vacancy (NV) centers in diamond as a sensor. Based on neural network algorithms, we develop noise recovery procedures and training sequences for highly non-linear spectra. We apply these methods to experimentally demonstrate fast identification of 31 nuclear spins around a single NV center and accurately determine the hyperfine parameters. Our methods can be extended to larger spin systems and are applicable to a wide range of electron-nuclear interaction strengths. These results enable efficient imaging of complex spin samples and automatic characterization of large spin-qubit registers.