论文标题

流体弹性模式分解框架和模式选择机制在流体膜相互作用中

Aeroelastic mode decomposition framework and mode selection mechanism in fluid-membrane interaction

论文作者

Li, G., Jaiman, R. K., Khoo, B. C.

论文摘要

在这项研究中,我们提出了一个全局傅立叶模式分解框架,用于不稳定的流体结构相互作用。我们应用框架来隔离和提取由耦合的三维流体膜系统产生的气弹性模式。所提出的框架被用来以统一的方式将流体和结构域中的物理变量分解为频率级的气体弹性模式。我们通过模式分解分析观察到涡流脱落与结构振动之间的频率同步。我们检查了灵活性在气体弹性模式选择中的作用,并对刚性机翼,刚性弯曲机翼和柔性膜之间的流量特征进行系统比较。借助我们的模式分解技术,我们发现主要的结构模式在不同的攻击角度表现出第二和跨度的第一模式。使用近似分析公式估算与该模式相对应的结构固有频率。通过检查耦合系统的主要频率,我们发现主要的膜振动模式是通过频率锁定频率插入之间的频率锁定频率和结构固有频率之间的。从$α= 20^\ Circ $和$ 25^\ Circ $的流体模式和模式的能量光谱中,发现对应于低于主要频率的非全能频率成分的航空弹性模式与Bluff Body Vortex摆脱不稳定性相关。在较高的攻击角度观察到的非周期性航空弹性响应与频率锁定频率锁定和虚张声势类涡流脱落引起的航空弹性模式之间的相互作用有关。

In this study, we present a global Fourier mode decomposition framework for unsteady fluid-structure interaction. We apply the framework to isolate and extract the aeroelastic modes arising from a coupled three-dimensional fluid-membrane system. The proposed framework is employed to decompose the physical variables in the fluid and structural domains into frequency-ranked aeroelastic modes in a unified way. We observe the frequency synchronization between the vortex shedding and the structural vibration via mode decomposition analysis. We examine the role of flexibility in the aeroelastic mode selection and perform a systematic comparison of flow features among a rigid wing, a rigid cambered wing and a flexible membrane. With the aid of our mode decomposition technique, we find that the dominant structural mode exhibits a chordwise second and spanwise first mode at different angles of attack. The structural natural frequency corresponding to this mode is estimated using an approximate analytical formula. By examining the dominant frequency of the coupled system, we find that the dominant membrane vibrational mode is selected via the frequency lock-in between the dominant vortex shedding frequency and the structural natural frequency. From the fluid modes and the mode energy spectra at $α=20^\circ$ and $25^\circ$, the aeroelastic modes corresponding to the non-integer frequency components lower than the dominant frequency are found to be associated with the bluff body vortex shedding instability. The non-periodic aeroelastic response observed at higher angles of attack are related to the interaction between aeroelastic modes caused by the frequency lock-in and the bluff-body-like vortex shedding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源