论文标题

在患者选择医院水平的选择中,使用深度学习和可解释的人工智能

Using Deep Learning and Explainable Artificial Intelligence in Patients' Choices of Hospital Levels

论文作者

Chen, Lichin, Tsao, Yu, Sheu, Ji-Tian

论文摘要

在使患者能够选择自己的提供者的国家中,一个普遍的问题是,患者没有做出合理的决定,因此无法有效地使用医疗保健资源。这可能会导致诸如患有轻度病人的压倒性第三级设施,从而限制了他们治疗急性和关键患者的能力。为了解决此类Maldistib的患者量,必须在进一步评估政策或资源分配之前监督患者的选择。这项研究使用了全国性的保险数据,积累了现有文献中讨论的可能功能,并使用深层神经网络来预测患者的医院水平。这项研究还使用了可解释的人工智能方法来解释特征对公众和个人的贡献。此外,我们探讨了不断变化的数据表示的有效性。结果表明,该模型能够在接收器工作特性曲线(AUC)(0.90),准确性(0.90),灵敏度(0.94)和特异性(0.97)(0.97)的情况下预测高面积。通常,公众对提供商的社会认可(正面或负面)以及所在地区每1000人服务的执业医师数量被列为最佳影响特征。不断变化的数据表示对预测的改进有积极影响。深度学习方法可以处理高度不平衡的数据并达到高精度。效果特征对公众和个人的影响有所不同。解决保险数据的稀疏性和离散性质会导致更好的预测。使用深度学习技术的应用在健康政策制定中有希望。解释模型和实施实施需要更多的工作。

In countries that enabled patients to choose their own providers, a common problem is that the patients did not make rational decisions, and hence, fail to use healthcare resources efficiently. This might cause problems such as overwhelming tertiary facilities with mild condition patients, thus limiting their capacity of treating acute and critical patients. To address such maldistributed patient volume, it is essential to oversee patients choices before further evaluation of a policy or resource allocation. This study used nationwide insurance data, accumulated possible features discussed in existing literature, and used a deep neural network to predict the patients choices of hospital levels. This study also used explainable artificial intelligence methods to interpret the contribution of features for the general public and individuals. In addition, we explored the effectiveness of changing data representations. The results showed that the model was able to predict with high area under the receiver operating characteristics curve (AUC) (0.90), accuracy (0.90), sensitivity (0.94), and specificity (0.97) with highly imbalanced label. Generally, social approval of the provider by the general public (positive or negative) and the number of practicing physicians serving per ten thousand people of the located area are listed as the top effecting features. The changing data representation had a positive effect on the prediction improvement. Deep learning methods can process highly imbalanced data and achieve high accuracy. The effecting features affect the general public and individuals differently. Addressing the sparsity and discrete nature of insurance data leads to better prediction. Applications using deep learning technology are promising in health policy making. More work is required to interpret models and practice implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源