论文标题
学习径向基础功能的schönberg测量的平均场理论
A Mean-Field Theory for Learning the Schönberg Measure of Radial Basis Functions
论文作者
论文摘要
我们开发和分析了一种预测的粒子兰格文鸟优化方法,以了解schönberg积分表示的分布,从训练样本中radial基的函数。更具体地说,我们表征了一种相对于Wasserstein距离的分布强大的优化方法,以优化Schönberg积分表示中的分布。为了提供理论性能保证,我们分析了平均场式制度中投影粒子在线(随机)优化方法的缩放限制。特别是,我们证明,在缩放限制中,Langevin颗粒的经验度量趋于反射的Itô扩散过程的定律。此外,漂移也是基础过程定律的函数。然后,使用ItôLemma进行半明木和Grisanov对Wiener过程的度量变化,然后我们通过Robin边界条件得出了McKean-Vlasov型部分差分方程(PDE),该方程描述了平均菲尔德赛中预测的Langevin颗粒的经验度量的演变。此外,我们确定了弱意义上衍生PDE的稳态解决方案的存在和独特性。我们将学习方法应用于局部敏感的哈希(LSH)函数中的径向核,其中训练数据集是通过$ k $ - 均值聚类方法生成的,该方法是在一小部分数据基库中生成的。随后,我们将内核LSH与受过训练的内核应用于MNIST数据集的图像检索任务,并证明了我们的内核学习方法的功效。我们还将内核学习方法与内核支持向量机(SVM)一起应用了基准数据集的分类。
We develop and analyze a projected particle Langevin optimization method to learn the distribution in the Schönberg integral representation of the radial basis functions from training samples. More specifically, we characterize a distributionally robust optimization method with respect to the Wasserstein distance to optimize the distribution in the Schönberg integral representation. To provide theoretical performance guarantees, we analyze the scaling limits of a projected particle online (stochastic) optimization method in the mean-field regime. In particular, we prove that in the scaling limits, the empirical measure of the Langevin particles converges to the law of a reflected Itô diffusion-drift process. Moreover, the drift is also a function of the law of the underlying process. Using Itô lemma for semi-martingales and Grisanov's change of measure for the Wiener processes, we then derive a Mckean-Vlasov type partial differential equation (PDE) with Robin boundary conditions that describes the evolution of the empirical measure of the projected Langevin particles in the mean-field regime. In addition, we establish the existence and uniqueness of the steady-state solutions of the derived PDE in the weak sense. We apply our learning approach to train radial kernels in the kernel locally sensitive hash (LSH) functions, where the training data-set is generated via a $k$-mean clustering method on a small subset of data-base. We subsequently apply our kernel LSH with a trained kernel for image retrieval task on MNIST data-set, and demonstrate the efficacy of our kernel learning approach. We also apply our kernel learning approach in conjunction with the kernel support vector machines (SVMs) for classification of benchmark data-sets.