论文标题
神经非刚性跟踪
Neural Non-Rigid Tracking
论文作者
论文摘要
我们介绍了一种新颖的,端到端可学习的,可区分的非刚性跟踪器,该跟踪器可以通过学习的强大优化实现最先进的非刚性重建。给定两个非辅助对象的输入RGB-D帧,我们采用卷积神经网络来预测密集的对应关系及其信心。这些对应关系用作可行的(ARAP)优化问题中的约束。通过通过加权的非线性最小二乘求解器启用梯度后传播,我们能够以端到端的方式学习对应关系和信心,从而最适合非刚性跟踪的任务。在此公式下,可以通过自学意义来学习信封,从而告知良好的优化,在这种优化中,离群值和错误的对应关系会自动下降加权以实现有效的跟踪。与最先进的方法相比,我们的算法显示出改进的重建性能,同时实现了比相当的基于基于深度学习的方法快85倍的对应性预测。我们使代码可用。
We introduce a novel, end-to-end learnable, differentiable non-rigid tracker that enables state-of-the-art non-rigid reconstruction by a learned robust optimization. Given two input RGB-D frames of a non-rigidly moving object, we employ a convolutional neural network to predict dense correspondences and their confidences. These correspondences are used as constraints in an as-rigid-as-possible (ARAP) optimization problem. By enabling gradient back-propagation through the weighted non-linear least squares solver, we are able to learn correspondences and confidences in an end-to-end manner such that they are optimal for the task of non-rigid tracking. Under this formulation, correspondence confidences can be learned via self-supervision, informing a learned robust optimization, where outliers and wrong correspondences are automatically down-weighted to enable effective tracking. Compared to state-of-the-art approaches, our algorithm shows improved reconstruction performance, while simultaneously achieving 85 times faster correspondence prediction than comparable deep-learning based methods. We make our code available.