论文标题

轮廓方法:一种寻找非绝热恒星搏动模式的新方法

The Contour Method: a new approach to finding modes of non-adiabatic stellar pulsations

论文作者

Goldstein, J., Townsend, R. H. D.

论文摘要

轮廓方法是一种计算恒星非绝热脉动频率的新方法。这些频率可以通过求解从线性非绝热恒星脉动方程构建的特征方程的复杂根来找到。一个复杂的根求解器需要每个非绝热根的初始试用频率。获得初始试验频率的标准方法是使用恒星的绝热脉动频率,但是这种方法可能无法收敛到非绝热根部,尤其是随着脉动的生长和/或阻尼速率变得较大。该轮廓方法提供了一种替代方法,即使对于具有极度非绝热脉动的恒星模型,也是较大的生长/阻尼率,即使是稳健地收敛到非绝热根的初始试验频率。我们描述了Gyre Stellar脉动代码中实现的轮廓方法,并使用它来计算$ 10 \,\ rm {M _ {\ odot}} $的非绝热脉动频率和$ 20 \,\ rm {m _ {m _ {\ odot} $ 20 $ 0.9 \,\ rm {m _ {\ odot}} $ Extreme Helium Star模型。

The contour method is a new approach to calculating the non-adiabatic pulsation frequencies of stars. These frequencies can be found by solving for the complex roots of a characteristic equation constructed from the linear non-adiabatic stellar pulsation equations. A complex-root solver requires an initial trial frequency for each non adiabatic root. A standard method for obtaining initial trial frequencies is to use a star's adiabatic pulsation frequencies, but this method can fail to converge to non-adiabatic roots, especially as the growth and/or damping rate of the pulsations becomes large. The contour method provides an alternative way for obtaining initial trial frequencies that robustly converges to non-adiabatic roots, even for stellar models with extremely non-adiabatic pulsations and thus large growth/damping rates. We describe the contour method implemented in the GYRE stellar pulsation code and use it to calculate the non-adiabatic pulsation frequencies of $10\,\rm{M_{\odot}}$ and $20\,\rm{M_{\odot}}$ $β$ Cephei star models, and of a $0.9\,\rm{M_{\odot}}$ extreme helium star model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源