论文标题

重要吗?使用质量分布区分中子星和黑洞

Does Matter Matter? Using the mass distribution to distinguish neutron stars and black holes

论文作者

Fishbach, Maya, Essick, Reed, Holz, Daniel E.

论文摘要

引力波检测器打开了一个新窗口,我们可以观察到黑洞(BHS)和中子星(NSS)。分析Ligo/处女座的第一个重力波目录GWTC-1的11个检测,我们研究了适合BH质谱的幂律是否也可以容纳二进制中性恒星(BNS)事件GW170817,或者我们是否需要其他功能,例如在NS和BH群体之间进行质量差距,例如质量差距。我们发现,关于幂律拟合二进制黑洞(BBH)质量,GW170817在0.13 \%水平上是一个异常值,这表明NS和BH质量之间有区别。在整个质量范围内适合的单个幂律与:(a)检测BNS质量范围内的一个源($ \ sim 1 $ - $ 2.5 \,m_ \ odot $),(b)“质量 - gap”范围中缺乏检测到($ \ sim 2.5 $ - $ 5 $ - $ 5 \,m_ \ odot $)和(bb)的范围,以及(bb)的范围,以及(bb),以及(bb),以及(c)。 ($ \ gtrsim 5 \,m_ \ odot $)。取而代之的是,该数据有利于NS和BH质量之间具有特征的模型,包括质量差距(贝叶斯因子为4.6)和功率定律中断,与BH质量相比,NS质量的斜率较高(91 \%可信度)。我们根据我们适合全球质量分布来估计紧凑型二进制文件的合并速率,找到$ \ natercal {r} _ \ mathrm {bns} = 871^{+3015} _ { - 805} _ { - 805} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ { $\mathcal{R}_\mathrm{BBH} = 47.5^{+57.9}_{-28.8} \ \mathrm{Gpc}^{-3} \ \mathrm{yr}^{-1}$.我们得出的结论是,即使没有任何先验知识NS和BHS之间的差异,仅重力波数据就已经表明了两个不同的紧凑型物体种群。

Gravitational-wave detectors have opened a new window through which we can observe black holes (BHs) and neutron stars (NSs). Analyzing the 11 detections from LIGO/Virgo's first gravitational-wave catalog, GWTC-1, we investigate whether the power-law fit to the BH mass spectrum can also accommodate the binary neutron star (BNS) event GW170817, or whether we require an additional feature, such as a mass gap, in between the NS and BH populations. We find that with respect to the power-law fit to binary black hole (BBH) masses, GW170817 is an outlier at the 0.13\% level, suggesting a distinction between NS and BH masses. A single power-law fit across the entire mass range is in mild tension with: (a) the detection of one source in the BNS mass range ($\sim 1$--$2.5 \,M_\odot$), (b) the absence of detections in the "mass-gap" range ($\sim 2.5$--$5 \,M_\odot$), and (c) the detection of 10 sources in the BBH mass range ($\gtrsim 5 \,M_\odot$). Instead, the data favor models with a feature between NS and BH masses, including a mass gap (Bayes factor of 4.6) and a break in the power law, with a steeper slope at NS masses compared to BH masses (91\% credibility). We estimate the merger rates of compact binaries based on our fit to the global mass distribution, finding $\mathcal{R}_\mathrm{BNS} = 871^{+3015}_{-805} \ \mathrm{Gpc}^{-3} \ \mathrm{yr}^{-1}$ and $\mathcal{R}_\mathrm{BBH} = 47.5^{+57.9}_{-28.8} \ \mathrm{Gpc}^{-3} \ \mathrm{yr}^{-1}$. We conclude that, even in the absence of any prior knowledge of the difference between NSs and BHs, the gravitational-wave data alone already suggest two distinct populations of compact objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源