论文标题

对角线和交织距离的增厚

Thickening of the diagonal and interleaving distance

论文作者

Petit, Francois, Schapira, Pierre

论文摘要

给定拓扑空间$ x $,增厚的内核是$(\ mathbb {r} _ {\ geq0},+)$的单型预毛,在$ x $上的派生核的单个类别中,值。在$(\ mathbb {r},+)$上定义了双重的内核。对于如此增厚的内核,一个人自然会在$ x $上派出的带束带类别的距离。 我们证明,在包含$ 0 $的间隔上定义了一个浓厚的内核,并且是独一无二的,从而使我们可以在两种不同的情况下构造(Bi-)增厚。 首先,当$ x $是一个``好''公制空间时,从对角的小通常增厚开始。相关的交织距离满足稳定性的特性,Lipschitz内核产生了Lipschitz地图。 其次,通过使用[GKS12],当$ x $是一种歧管时,并且在cotangent捆绑包上给出了非阳性的哈密顿同位素。如果$ x $是具有严格阳性凸度半径的完整的Riemannian歧管,我们证明它是一个很好的度量空间,并且对角的两个双重厚的内核,一个与距离相关,另一个与大地测量流有关。

Given a topological space $X$, a thickening kernel is a monoidal presheaf on $(\mathbb{R}_{\geq0},+)$ with values in the monoidal category of derived kernels on $X$. A bi-thickening kernel is defined on $(\mathbb{R},+)$. To such a thickening kernel, one naturally associates an interleaving distance on the derived category of sheaves on $X$. We prove that a thickening kernel exists and is unique as soon as it is defined on an interval containing $0$, allowing us to construct (bi-)thickenings in two different situations. First, when $X$ is a ``good'' metric space, starting with small usual thickenings of the diagonal. The associated interleaving distance satisfies the stability property and Lipschitz kernels give rise to Lipschitz maps. Second, by using [GKS12], when $X$ is a manifold and one is given a non-positive Hamiltonian isotopy on the cotangent bundle. In case $X$ is a complete Riemannian manifold having a strictly positive convexity radius, we prove that it is a good metric space and that the two bi-thickening kernels of the diagonal, one associated with the distance, the other with the geodesic flow, coincide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源