论文标题

X射线成像中的依次优化投影

Sequentially optimized projections in X-ray imaging

论文作者

Burger, Martin, Hauptmann, Andreas, Helin, Tapio, Hyvönen, Nuutti, Puska, Juha-Pekka

论文摘要

这项工作将贝叶斯实验设计应用于(离散的)平行梁X射线断层扫描中的最佳投影几何形状,假设添加噪声为高斯。引入的贪婪详尽的优化算法顺序进行,后验分布对应于先前的投影作为确定设计参数的先验,即成像角度和源接收器对的横向位置,用于下一个。该算法允许在每个投影后重新定义感兴趣的区域,以及在测量数据之前(原始)中调整(原始)中的参数。 A和D型急诊室都被考虑,重点是对相应目标函数的有效评估。二维数值实验证明了该方法的功能。

This work applies Bayesian experimental design to selecting optimal projection geometries in (discretized) parallel beam X-ray tomography assuming the prior and the additive noise are Gaussian. The introduced greedy exhaustive optimization algorithm proceeds sequentially, with the posterior distribution corresponding to the previous projections serving as the prior for determining the design parameters, i.e. the imaging angle and the lateral position of the source-receiver pair, for the next one. The algorithm allows redefining the region of interest after each projection as well as adapting parameters in the (original) prior to the measured data. Both A and D-optimality are considered, with emphasis on efficient evaluation of the corresponding objective functions. Two-dimensional numerical experiments demonstrate the functionality of the approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源