论文标题

对欧拉的算术功能和梅农的身份的另一个概括

Another generalization of Euler's arithmetic function and Menon's identity

论文作者

Tóth, László

论文摘要

我们将$ k $维的概括欧拉函数$φ_k(n)$定义为订购的$ k $ -tuples $(a_1,\ ldots,a_k)\ in {\ bbb n}^k $ in {\ bbb n}^k $ in {\ bbb n}^k $,因此$ 1 \ le a_1,\ ldots $ a_1 $ cd $ cd $ cd y n $ a_1 $ a_1 +\ cdots +a_k $是素数至$ n $。我们研究了函数$φ_K(n)$的某些属性,并获得相应的Menon型身份。

We define the $k$-dimensional generalized Euler function $φ_k(n)$ as the number of ordered $k$-tuples $(a_1,\ldots,a_k)\in {\Bbb N}^k$ such that $1\le a_1,\ldots,a_k\le n$ and both the product $a_1\cdots a_k$ and the sum $a_1+\cdots +a_k$ are prime to $n$. We investigate some of properties of the function $φ_k(n)$, and obtain a corresponding Menon-type identity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源