论文标题

深度负量细分

Deep Negative Volume Segmentation

论文作者

Belikova, Kristina, Rogov, Oleg, Rybakov, Aleksandr, Maslov, Maxim V., Dylov, Dmitry V.

论文摘要

复合解剖学对象(例如复杂关节)的三维图像数据的临床检查仍然是一个乏味的过程,要求医生的时间和专业知识。例如,TMJ(颞下颌关节)的分割任务的自动化受到其复合的三维形状,多个覆盖纹理的质地,颅骨中周围的不规则不规则的大量,并且实际上是jaw的运动范围的大量不规则范围 - 所有手动注释过程都会扩展到每个小时的患者。为了应对挑战,我们与3D分割任务发明了一个新的角度:即,我们建议在物体周围的所有组织之间进行空空间 - 所谓的负容量分割。我们的方法是一种端到端管道,该管道包括用于骨分割的V-NET,通过正常矢量沿着正常矢量到其网格面的各个方向的重建骨头的膨胀来构建3D体积。最终,膨胀的表面被限制在颅骨内,在关节中占据了整个“负”空间,从而有效地提供了关节健康的几何/拓扑度量。我们验证了50名患者数据集中CT扫描的想法,由颌面医学专家注释,定量比较给定左和右负数的不对称性,并自动化整个临床采用框架。

Clinical examination of three-dimensional image data of compound anatomical objects, such as complex joints, remains a tedious process, demanding the time and the expertise of physicians. For instance, automation of the segmentation task of the TMJ (temporomandibular joint) has been hindered by its compound three-dimensional shape, multiple overlaid textures, an abundance of surrounding irregularities in the skull, and a virtually omnidirectional range of the jaw's motion - all of which extend the manual annotation process to more than an hour per patient. To address the challenge, we invent a new angle to the 3D segmentation task: namely, we propose to segment empty spaces between all the tissues surrounding the object - the so-called negative volume segmentation. Our approach is an end-to-end pipeline that comprises a V-Net for bone segmentation, a 3D volume construction by inflation of the reconstructed bone head in all directions along the normal vector to its mesh faces. Eventually confined within the skull bones, the inflated surface occupies the entire "negative" space in the joint, effectively providing a geometrical/topological metric of the joint's health. We validate the idea on the CT scans in a 50-patient dataset, annotated by experts in maxillofacial medicine, quantitatively compare the asymmetry given the left and the right negative volumes, and automate the entire framework for clinical adoption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源