论文标题

柯奇空间在拓扑上是僵化的

The Kirch space is topologically rigid

论文作者

Banakh, Taras, Stelmakh, Yaryna, Turek, Sławomir

论文摘要

$ golomb $ $ $ space $(分别。 $ a $。众所周知,Golomb空间(分别是Kirch空间)已连接(并局部连接)。到Banakh,Spirito和Turek的最新结果,Golomb空间具有微不足道的同构小组,因此在拓扑上是僵化的。在本文中,我们证明了基尔奇空间的拓扑刚性。

The $Golomb$ $space$ (resp. the $Kirch$ $space$) is the set $\mathbb N$ of positive integers endowed with the topology generated by the base consisting of arithmetic progressions $a+b\mathbb N_0=\{a+bn:n\ge 0\}$ where $a\in\mathbb N$ and $b$ is a (square-free) number, coprime with $a$. It is known that the Golomb space (resp. the Kirch space) is connected (and locally connected). By a recent result of Banakh, Spirito and Turek, the Golomb space has trivial homeomorphism group and hence is topologically rigid. In this paper we prove the topological rigidity of the Kirch space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源