论文标题
积分nilpotent颤抖表示的Zeta函数
Zeta functions of integral nilpotent quiver representations
论文作者
论文摘要
我们介绍和研究多元Zeta函数列举了整体箭量表示的亚代表。对于在数字字段上定义的nilpotent,我们表现出一种同质性条件,我们证明这足以足以容纳这些Zeta函数的通用欧拉因子的局部功能方程。这概括并统一了先前的ZETA函数的工作,包括nilpotent(Lie)环的理想Zeta函数及其分级类似物。
We introduce and study multivariate zeta functions enumerating subrepresentations of integral quiver representations. For nilpotent such representations defined over number fields, we exhibit a homogeneity condition that we prove to be sufficient for local functional equations of the generic Euler factors of these zeta functions. This generalizes and unifies previous work on submodule zeta functions including, specifically, ideal zeta functions of nilpotent (Lie) rings and their graded analogues.