论文标题

伸缩密度比率估计

Telescoping Density-Ratio Estimation

论文作者

Rhodes, Benjamin, Xu, Kai, Gutmann, Michael U.

论文摘要

通过分类进行的密度比率估计是无监督学习的基石。它为表示学习和生成建模的最新方法提供了基础,用例的数量继续扩散。但是,它受到关键限制:它无法准确估计两个密度有很大差异的比率P/Q。从经验上讲,每当p和q之间的kl差异超过数十几个NAT时,我们都会发现这一点。为了解决这一限制,我们引入了一个新的框架,望远镜的密度比率估计(TRE),该框架可以估算高维空间中高度不同的密度之间的比率。我们的实验表明,TRE可以对现有的单比率方法产生实质性改进,以进行相互信息估计,表示学习和基于能量的建模。

Density-ratio estimation via classification is a cornerstone of unsupervised learning. It has provided the foundation for state-of-the-art methods in representation learning and generative modelling, with the number of use-cases continuing to proliferate. However, it suffers from a critical limitation: it fails to accurately estimate ratios p/q for which the two densities differ significantly. Empirically, we find this occurs whenever the KL divergence between p and q exceeds tens of nats. To resolve this limitation, we introduce a new framework, telescoping density-ratio estimation (TRE), that enables the estimation of ratios between highly dissimilar densities in high-dimensional spaces. Our experiments demonstrate that TRE can yield substantial improvements over existing single-ratio methods for mutual information estimation, representation learning and energy-based modelling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源