论文标题

高精度数字交通记录,具有多级速度基础架构传感器设置

High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure Sensor Setups

论文作者

Kloeker, Laurent, Geller, Christian, Kloeker, Amarin, Eckstein, Lutz

论文摘要

大型驾驶数据集是当前开发和保护自动驾驶功能的关键组成部分。可以使用各种方法来收集此类驾驶数据记录。除了使用配备传感器的研究工具或无人机(UAV)之外,基础设施传感器技术的使用还提供了另一种选择。为了最大程度地减少数据收集过程中的对象阻塞,至关重要的是从多个角度并行记录流量情况。与使用单个原始传感器数据相比,所有原始传感器数据的融合可能会为多对象检测和跟踪(MODT)创造更好的条件。到目前为止,尚未进行足够的研究来充分证实这种方法。在我们的工作中,我们研究了与单个LIDAR点云相比,融合LiDAR点云的影响。我们对不同的城市交通情况进行建模,最多八个64层的激光雷达在模拟和实际上。然后,我们分析结果点云的属性,并为所有新兴的流量参与者执行MODT。对提取的轨迹的评估表明,融合的基础设施方法可显着增加跟踪结果,并在几厘米内达到精度。

Large driving datasets are a key component in the current development and safeguarding of automated driving functions. Various methods can be used to collect such driving data records. In addition to the use of sensor equipped research vehicles or unmanned aerial vehicles (UAVs), the use of infrastructure sensor technology offers another alternative. To minimize object occlusion during data collection, it is crucial to record the traffic situation from several perspectives in parallel. A fusion of all raw sensor data might create better conditions for multi-object detection and tracking (MODT) compared to the use of individual raw sensor data. So far, no sufficient studies have been conducted to sufficiently confirm this approach. In our work we investigate the impact of fused LiDAR point clouds compared to single LiDAR point clouds. We model different urban traffic scenarios with up to eight 64-layer LiDARs in simulation and in reality. We then analyze the properties of the resulting point clouds and perform MODT for all emerging traffic participants. The evaluation of the extracted trajectories shows that a fused infrastructure approach significantly increases the tracking results and reaches accuracies within a few centimeters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源