论文标题
在被选择的量子计算中有效产生基态的硬度
Hardness of efficiently generating ground states in postselected quantum computation
论文作者
论文摘要
在量子多项式时间中,产生任何当地哈密顿人的基态似乎是不可能的。在本文中,我们通过应用在量子计算 - 苏制方法中使用的论点来提供证据证明不可能的证据。更确切地说,我们表明,如果任何$ 3 $ - 本地的哈密顿人的基态可以在量子多项式时间内大约生成,则使用seleclection进行$ {\ sf pp} = {\ sf ppspace} $。我们的结果优于现有发现,从某种意义上说,我们将不可能的经典复杂性类别之间的关系减少了。我们还讨论了是什么使得有效地生成基接地状态以进行定居的量子计算。
Generating ground states of any local Hamiltonians seems to be impossible in quantum polynomial time. In this paper, we give evidence for the impossibility by applying an argument used in the quantum-computational-supremacy approach. More precisely, we show that if ground states of any $3$-local Hamiltonians can be approximately generated in quantum polynomial time with postselection, then ${\sf PP}={\sf PSPACE}$. Our result is superior to the existing findings in the sense that we reduce the impossibility to an unlikely relation between classical complexity classes. We also discuss what makes efficiently generating the ground states hard for postselected quantum computation.