论文标题
$ \ mathbb {r}^d $缺乏分析学准周期的schrodinger操作员的特征值
Absence of eigenvalues of analytic quasi-periodic Schrodinger operators on $\mathbb{R}^d$
论文作者
论文摘要
在本文中,我们在$ l^2(\ mathbb {r}^d)上研究$ quasi-periodicSchrödinger操作员$ h =-Δ+λv(x),其中$ v $是真正的分析Quasi-periodic函数和$λ> 0 $。我们首先表明$ h $在\ textit {低能区域}中没有特征值。我们还提供\ textIt {低能区域}新的相变参数,即耦合强度与频率长度之间的竞争。
In this paper we study on $L^2(\mathbb{R}^d)$ the quasi-periodic Schrödinger operator $H=-Δ+ λV(x),$ where $V$ is a real analytic quasi-periodic function and $λ>0$. We first show that $H$ has no eigenvalues in \textit{low energy region}. We also provide in \textit{low energy region} the new phase transition parameter, i.e. the competition between the strength of coupling and the length for frequencies.