论文标题
基于混沌洛伦兹系统和新型原始多项式S-boxes的图像加密算法
An image encryption algorithm based on chaotic Lorenz system and novel primitive polynomial S-boxes
论文作者
论文摘要
如今,由于其效率,鲁棒性的保证和与初始条件相对应的高灵敏度,混乱的密码系统正在越来越关注。在文献中,一方面有许多加密算法只能保证安全性,而另一方面,基于混乱系统的方案只能保证不确定性。由于这些局限性,这些方法中的每一种都无法充分遇到当前情况的挑战。在这里,我们采用统一的方法,并提出基于Lorenz混沌系统和原始不可减至的多项式S盒的图像加密算法。首先,我们提出了16个不同的S-box,基于投影的通用线性基团和16个阶阶Galois场的原始不可约多项式,然后在图像加密方案中使用混沌映射的组合利用这些S-boxes。洛伦兹混乱系统可以产生三个混乱的序列,该系统对应于变量$ x $,$ y $和$ z $。我们以$ x $,$ y $和$ z $为基础构建了一个新的伪随机混沌序列$ k_i $。通过使用混乱序列$ k_i $和XOR操作来获取可密码图像,可以加密纯图像。为了证明提出的图像加密的强度,进行了一些著名的分析以及MATLAB模拟。
Nowadays, the chaotic cryptosystems are gaining more attention due to their efficiency, the assurance of robustness and high sensitivity corresponding to initial conditions. In literature, on one hand there are many encryption algorithms that only guarantee security while on the other hand there are schemes based on chaotic systems that only promise the uncertainty. Due to these limitations, each of these approaches cannot adequately encounter the challenges of current scenario. Here we take a unified approach and propose an image encryption algorithm based on Lorenz chaotic system and primitive irreducible polynomial S-boxes. First, we propose 16 different S-boxes based on projective general linear group and 16 primitive irreducible polynomials of Galois field of order 256, and then utilize these S-boxes with combination of chaotic map in image encryption scheme. Three chaotic sequences can be produced by the Lorenz chaotic system corresponding to variables $x$, $y$ and $z$. We construct a new pseudo random chaotic sequence $k_i$ based on $x$, $y$ and $z$. The plain image is encrypted by the use of chaotic sequence $k_i$ and XOR operation to get a ciphered image. To demonstrate the strength of presented image encryption, some renowned analyses as well as MATLAB simulations are performed.