论文标题

威胁互联网在动态智能虚拟传感中内省

Internet of Threats Introspection in Dynamic Intelligent Virtual Sensing

论文作者

Kebande, Victor R., Bugeja, Joseph, Persson, Jan A.

论文摘要

跨物联网(IoT)生态系统的沟通基础架构的持续无处不在,已经看到了动态,智能,虚拟化感应和驱动的持续进步。这导致了整个互联生态系统的有效互动。此外,这使创建了智能环境,这已经创建了开发不同物联网协议的需求,这些协议支持通过Internet上数十亿个电子设备的信息传递。尽管如此,通过物联网技术(例如无线传感器网络(WSN),RFID,WiFI,WiFi,Bluetooth,Zigbee,IEEE 802.15.4等)支持的虚拟传感器的现象,它可以使物理传感器和效果通过动态分配实现虚拟Sensor资源来实现更有效的资源管理。一个独特的例子是动态智能虚拟传感器(DIVS)的主张。这个Divs概念是一个新颖的命题,可以通过使用标记数据来使用逻辑实例来进行感测。这允许在数据融合过程中进行准确的预测。但是,对DIV的潜在安全攻击最终可能会在用户反馈过程(UFP)期间提供错误的标签,这可能会干扰DIV的准确性。本文研究了在物联网生态系统中使用DIVS中的威胁格局,以确定这些威胁的严重性在多大程度上可能阻碍基于标签数据的IOT的准确预测。

Continued ubiquity of communication infrastructure across Internet of Things (IoT) ecosystems has seen persistent advances of dynamic, intelligent, virtualised sensing and actuation. This has led to effective interaction across the connected ecosystem of -things. Furthermore, this has enabled the creation of smart environments that has created the need for the development of different IoT protocols that support the relaying of information across billions of electronic devices over the Internet. That notwithstanding, the phenomenon of virtual sensors that are supported by IoT technologies like Wireless Sensor Networks (WSNs), RFID, WIFI, Bluetooth, ZigBee, IEEE 802.15.4, etc., emulates physical sensors, and enables more efficient resource management through the dynamic allocation of virtual sensor resources. A distinctive example of this has been the proposition of the Dynamic Intelligent Virtual Sensors (DIVS). This DIVS concept is a novel proposition that allows sensing to be done by the use of logical instances through the use of labeled data. This allows for making accurate predictions during data fusion. However, a potential security attack on DIVS may end up providing false labels during the User Feedback Process (UFP), which may interfere with the accuracy of DIVS. This paper investigates the threat landscape in DIVS when employed in IoT ecosystems, in order to identify the extent to which the severity of these threats may hinder accurate prediction of DIVS in IoT, based on labeled data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源