论文标题
具有额外尺寸的粒子模型来自COADEXHOINT POINCARE的对称性
A particle model with extra dimensions from Coadjoint Poincare' Symmetry
论文作者
论文摘要
从CoadhexhexhointPoincaré代数开始,我们构建了一个点粒子相对论模型,其解释是根据额外的变量来解释的。起始CoadhexhexhexhointPoincaré代数能够诱导Minkowski空间的通常坐标与二维变量之间的尺寸降低机制,这些变量结果在Lorentz组下形成了反对称性张量。 分析该模型的动力学,我们发现,在特定的限制下,可以整合额外的变量,并确定它们对通常时间时间中材料点的动力学的影响。 该模型描述了粒子 在$ d $尺寸中,当模型的一个参数之一为负时,会受到谐波运动的影响。 结果可以解释为对平面Minkowski度量的修改,该指标具有非琐碎的Riemann,Ricci张量和标量曲率
Starting from the coadjoint Poincaré algebra we construct a point particle relativistic model with an interpretation in terms of extra-dimensional variables. The starting coadjoint Poincaré algebra is able to induce a mechanism of dimensional reduction between the usual coordinates of the Minkowski space and the extra-dimensional variables which turn out to form an antisymmetric tensor under the Lorentz group. Analysing the dynamics of this model, we find that, in a particular limit, it is possible to integrate out the extra variables and determine their effect on the dynamics of the material point in the usual space time. The model describes a particle in $D$ dimensions subject to a harmonic motion when one of the parameters of the model is negative. The result can be interpreted as a modification to the flat Minkowski metric with non trivial Riemann, Ricci tensors and scalar curvature