论文标题

在某些具有基质重量和经典类型Sobolev正交多项式的Sobolev空间上

On some Sobolev spaces with matrix weights and classical type Sobolev orthogonal polynomials

论文作者

Zagorodnyuk, Sergey M.

论文摘要

对于每个系统$ \ {p_n(z)\} _ {n = 0}^\ oprl或opuc的infty $,我们构建了Sobolev orthoconal polyenmials $ y_n(z)$,具有涉及$ p_n $的明显积分表示。 Sobolev正交多项式的两个混凝土家族(取决于任意数量的复杂参数),它们是差异操作员的广义特征值(以$ n $为单位),并给出了差异运算符的广义特征值(以$ n $)。讨论了Sobolev正交多项式和函数的正交系统之间的一般连接在标量$ l^2_μ$空间中的应用。

For every system $\{ p_n(z) \}_{n=0}^\infty$ of OPRL or OPUC, we construct Sobolev orthogonal polynomials $y_n(z)$, with explicit integral representations involving $p_n$. Two concrete families of Sobolev orthogonal polynomials (depending on an arbitrary number of complex parameters) which are generalized eigenvalues of a difference operator (in $n$) and generalized eigenvalues of a differential operator (in $n$) are given. Applications of a general connection between Sobolev orthogonal polynomials and orthogonal systems of functions in the direct sum of scalar $L^2_μ$ spaces are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源