论文标题
$(1+λ)$ ea Onemax上的最佳突变率
Optimal Mutation Rates for the $(1+λ)$ EA on OneMax
论文作者
论文摘要
Onemax问题或称为锤距离问题,通常称为“进化计算的果蝇(EC)”,因为它在EC方法的理论和经验分析中具有很高的相关性。因此,令人惊讶的是,即使对于所有基于突变的算法中最简单的算法,随机局部搜索和(1+1)EA,最佳突变率也仅在GECCO 2019海报中才确定。 在这项工作中,我们将最佳突变率的分析扩展到$(1+λ)$ ea的两个变体和$(1+λ)$ rls。为此,我们使用动态编程,对于$(1+λ)$ ea,数字优化,均需要$θ(n^3)$时间来解决问题尺寸$ n $。借助此功能,我们为所有人口尺寸计算$λ\ in \ {2^i \ mid 0 \ le i \ le i \ le 18 \} $,以及问题维度$ n \ in \ {1000,2000,5000 \} $,这些突变的突变率最小化了预期的运行时间,哪些人最大化了预期的进展。 我们的结果不仅提供了一个下限,我们可以衡量通用进化方法,而且还可以洞悉这些最佳参数选择的结构。例如,我们表明,对于较大的人口大小,翻转的最佳钻头数量不是最佳距离的单调。我们还观察到,对于$(1+λ)$ ea $ _ {0 \ rightarrow 1} $,带有变化的突变的$(1+λ)$ ea $ _ {0 \ ea $ _ $ _ $ _ $ _ $ _ EA {0 \λ)不一定是单峰的。
The OneMax problem, alternatively known as the Hamming distance problem, is often referred to as the "drosophila of evolutionary computation (EC)", because of its high relevance in theoretical and empirical analyses of EC approaches. It is therefore surprising that even for the simplest of all mutation-based algorithms, Randomized Local Search and the (1+1) EA, the optimal mutation rates were determined only very recently, in a GECCO 2019 poster. In this work, we extend the analysis of optimal mutation rates to two variants of the $(1+λ)$ EA and to the $(1+λ)$ RLS. To do this, we use dynamic programming and, for the $(1+λ)$ EA, numeric optimization, both requiring $Θ(n^3)$ time for problem dimension $n$. With this in hand, we compute for all population sizes $λ\in \{2^i \mid 0 \le i \le 18\}$ and for problem dimension $n \in \{1000, 2000, 5000\}$ which mutation rates minimize the expected running time and which ones maximize the expected progress. Our results do not only provide a lower bound against which we can measure common evolutionary approaches, but we also obtain insight into the structure of these optimal parameter choices. For example, we show that, for large population sizes, the best number of bits to flip is not monotone in the distance to the optimum. We also observe that the expected remaining running time are not necessarily unimodal for the $(1+λ)$ EA$_{0 \rightarrow 1}$ with shifted mutation.