论文标题
局部傅立叶分析杂交和嵌入式不连续的盖尔金方法的多移民分析
Local Fourier analysis of multigrid for hybridized and embedded discontinuous Galerkin methods
论文作者
论文摘要
在本文中,我们提出了一种与雅各比(Jacobi)和范卡(Vanka)松弛的几何多机方法,用于杂交和嵌入的不连续的拉普拉斯(Laplacian)的盖尔金(Galerkin)离散。我们提出了两个网格误差传播操作员的局部傅立叶分析(LFA),并表明应用于嵌入式不连续的Galerkin(EDG)离散化的多机方法几乎与应用于连续的Galerkin Extivation时一样有效。我们此外表明,应用于EDG离散化的Multigrid优于应用于杂交不连续的Galerkin(HDG)离散化的多移民。数值示例验证我们的LFA预测。
In this paper we present a geometric multigrid method with Jacobi and Vanka relaxation for hybridized and embedded discontinuous Galerkin discretizations of the Laplacian. We present a local Fourier analysis (LFA) of the two-grid error-propagation operator and show that the multigrid method applied to an embedded discontinuous Galerkin (EDG) discretization is almost as efficient as when applied to a continuous Galerkin discretization. We furthermore show that multigrid applied to an EDG discretization outperforms multigrid applied to a hybridized discontinuous Galerkin (HDG) discretization. Numerical examples verify our LFA predictions.