论文标题
可视化和理解视觉系统
Visualizing and Understanding Vision System
论文作者
论文摘要
人类视力系统如何解决对象身份保护性识别问题是未知的。在这里,我们使用视觉识别回复网络(RRN)来研究开发,识别,学习和忘记机制,并获得与猴子中电生理测量相似的特征。首先,在网络开发研究中,RRN还经历了关键的发育阶段,其特征是神经元类型,突触和激活模式的特异性以及从粗显着图识别的早期阶段到良好结构识别的成熟阶段的视觉任务表现。在数字识别研究中,我们目睹了RRN可以通过协调人群神经元的响应来维持对象不变性表示。这种协同的人群响应包含无缠结的对象身份和属性信息,这些信息可以通过高级皮层或简单的加权求和解码器准确地提取。在学习和遗忘的研究中,通过低幅度调整整个突触,而原始突触连通性的模式特异性可以保留学习过程,从而保证学习过程而不会破坏现有功能,从而实现了新的结构识别。这项工作有利于对人类视觉处理机制的理解和类似人类的机器智能的发展。
How the human vision system addresses the object identity-preserving recognition problem is largely unknown. Here, we use a vision recognition-reconstruction network (RRN) to investigate the development, recognition, learning and forgetting mechanisms, and achieve similar characteristics to electrophysiological measurements in monkeys. First, in network development study, the RRN also experiences critical developmental stages characterized by specificities in neuron types, synapse and activation patterns, and visual task performance from the early stage of coarse salience map recognition to mature stage of fine structure recognition. In digit recognition study, we witness that the RRN could maintain object invariance representation under various viewing conditions by coordinated adjustment of responses of population neurons. And such concerted population responses contained untangled object identity and properties information that could be accurately extracted via high-level cortices or even a simple weighted summation decoder. In the learning and forgetting study, novel structure recognition is implemented by adjusting entire synapses in low magnitude while pattern specificities of original synaptic connectivity are preserved, which guaranteed a learning process without disrupting the existing functionalities. This work benefits the understanding of the human visual processing mechanism and the development of human-like machine intelligence.