论文标题

pranet:息肉分割的平行反向注意网络

PraNet: Parallel Reverse Attention Network for Polyp Segmentation

论文作者

Fan, Deng-Ping, Ji, Ge-Peng, Zhou, Tao, Chen, Geng, Fu, Huazhu, Shen, Jianbing, Shao, Ling

论文摘要

结肠镜检查是一种用于检测结直肠息肉的有效技术,该技术与大肠癌高度相关。在临床实践中,从结肠镜检查中分割息肉非常重要,因为它为诊断和手术提供了有价值的信息。但是,准确的息肉细分是一项具有挑战性的任务,其两个主要原因是:(i)相同类型的息肉具有大小,颜色和质地的多样性; (ii)息肉及其周围粘膜之间的边界并不清晰。为了应对这些挑战,我们提出了一个平行的反向注意网络(PRANET),以进行结肠镜检查中的准确息肉分割。具体而言,我们首先使用并行部分解码器(PPD)在高级层中汇总特征。然后,基于组合功能,我们生成一个全局地图作为以下组件的初始指导区域。此外,我们使用反向关注(RA)模块来挖掘边界线索,该模块能够建立区域和边界线索之间的关系。得益于区域和边界之间的循环合作机制,我们的pranet能够校准任何未对准的预测,从而提高了细分精度。对六个指标的五个具有挑战性的数据集进行定量和定性评估表明,我们的pranet可显着提高分割精度,并在通用性和实时细分效率方面具有许多优势。

Colonoscopy is an effective technique for detecting colorectal polyps, which are highly related to colorectal cancer. In clinical practice, segmenting polyps from colonoscopy images is of great importance since it provides valuable information for diagnosis and surgery. However, accurate polyp segmentation is a challenging task, for two major reasons: (i) the same type of polyps has a diversity of size, color and texture; and (ii) the boundary between a polyp and its surrounding mucosa is not sharp. To address these challenges, we propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images. Specifically, we first aggregate the features in high-level layers using a parallel partial decoder (PPD). Based on the combined feature, we then generate a global map as the initial guidance area for the following components. In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues. Thanks to the recurrent cooperation mechanism between areas and boundaries, our PraNet is capable of calibrating any misaligned predictions, improving the segmentation accuracy. Quantitative and qualitative evaluations on five challenging datasets across six metrics show that our PraNet improves the segmentation accuracy significantly, and presents a number of advantages in terms of generalizability, and real-time segmentation efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源