论文标题
压力机:2D应力分布预测的生成深度学习模型
StressGAN: A Generative Deep Learning Model for 2D Stress Distribution Prediction
论文作者
论文摘要
使用深度学习来分析机械应力分布已引起人们对快速压力分析方法的需求的兴趣。深度学习方法在不知道基本方程的情况下使用物理学来加快压力计算并学习物理学时取得了出色的成果。但是,大多数研究限制了几何或边界条件的变化,使这些方法难以推广到看不见的配置。我们提出了一个有条件的生成对抗网络(CGAN)模型,用于预测固体结构中的2D von Mises应力分布。 CGAN学会通过在没有先验知识的两个神经网络之间的两人最小值游戏来产生以几何形状,负载和边界条件为条件的压力分布。通过在多个指标下评估两个应力分布数据集上的生成网络,我们证明了与基线卷积神经网络模型相比,我们的模型可以预测更准确的高分辨率应力分布,鉴于几何,负载和边界条件的各种复杂案例。
Using deep learning to analyze mechanical stress distributions has been gaining interest with the demand for fast stress analysis methods. Deep learning approaches have achieved excellent outcomes when utilized to speed up stress computation and learn the physics without prior knowledge of underlying equations. However, most studies restrict the variation of geometry or boundary conditions, making these methods difficult to be generalized to unseen configurations. We propose a conditional generative adversarial network (cGAN) model for predicting 2D von Mises stress distributions in solid structures. The cGAN learns to generate stress distributions conditioned by geometries, load, and boundary conditions through a two-player minimax game between two neural networks with no prior knowledge. By evaluating the generative network on two stress distribution datasets under multiple metrics, we demonstrate that our model can predict more accurate high-resolution stress distributions than a baseline convolutional neural network model, given various and complex cases of geometry, load and boundary conditions.