论文标题
随机størmer-verlet恒温器的挑战产生正确的统计数据
The Challenge of Stochastic Størmer-Verlet Thermostats Generating Correct Statistics
论文作者
论文摘要
鉴于最近开发的单个随机变量随机,离散时间størmer-佛经算法的完整GJ集,用于统计准确的langevin方程模拟,我们调查了两个出色的问题:1)是否有任何算法或统计益处是否有任何算法或统计益处,包括每个时间段的多个随机变量,以及使用一个或2)是否有一个或更多的方法来使用一个或更多的方法。为了解决第一个问题,我们假设具有两个随机变量的离散时间方程的通用形式,然后通过在线性系统中执行正确的热力学来遵循系统的,蛮力的GJ方法。得出的结论是,在谐波电位中,正确的粒子的正确构型玻尔兹曼采样意味着正确的构型游离粒子扩散,并且只有在每个时间步的两个随机变量相同时才能实现这些要求。因此,我们认为GJ集代表所有可能的随机størmer-verlet方法,这些方法可以重现线性系统的时间段独立统计。因此,第二个问题在GJ集中解决。一部分基于复杂分子系统的数值模拟,部分基于时间的分析缩放,我们分析了不同方法之间稳定性的明显差异。我们将这种差异归因于每种方法的固有时间缩放,并建议这种缩放可能导致解释动态和统计模拟结果的不一致。因此,我们建议使用最固有的时间缩放的方法,即GJ-I/GJF-2GJ方法,对于统计应用,在不良时间的统计应用中首选。
In light of the recently developed complete GJ set of single random variable stochastic, discrete-time Størmer-Verlet algorithms for statistically accurate simulations of Langevin equations, we investigate two outstanding questions: 1) Are there any algorithmic or statistical benefits from including multiple random variables per time-step, and 2) are there objective reasons for using one or more methods from the available set of statistically correct algorithms? To address the first question, we assume a general form for the discrete-time equations with two random variables and then follow the systematic, brute-force GJ methodology by enforcing correct thermodynamics in linear systems. It is concluded that correct configurational Boltzmann sampling of a particle in a harmonic potential implies correct configurational free-particle diffusion, and that these requirements only can be accomplished if the two random variables per time step are identical. We consequently submit that the GJ set represents all possible stochastic Størmer-Verlet methods that can reproduce time-step-independent statistics of linear systems. The second question is thus addressed within the GJ set. Based in part on numerical simulations of complex molecular systems, and in part on analytic scaling of time, we analyze the apparent difference in stability between different methods. We attribute this difference to the inherent time scaling in each method, and suggest that this scaling may lead to inconsistencies in the interpretation of dynamical and statistical simulation results. We therefore suggest that the method with the least inherent time-scaling, the GJ-I/GJF-2GJ method, be preferred for statistical applications where spurious rescaling of time is undesirable.