论文标题
随机二次汉密尔顿人的特征态纠缠熵
Eigenstate Entanglement Entropy in Random Quadratic Hamiltonians
论文作者
论文摘要
最近已证明本征态纠缠熵是将集成与通用量子差异模型区分开的强大工具。在可集成的模型中,平均特征态纠缠熵的独特特征(在所有哈密顿特征态上)是,体积law系数取决于子系统分数。因此,它偏离了量子 - 偶然模型中遇到的最大(子系统分数)值。使用随机矩阵理论作为二次汉密尔顿人,我们获得了平均本征状纠缠熵的闭合形式表达,这是子系统分数的函数。我们测试了其针对二次Sachdev-ye-Kitaev模型的数值结果的正确性。我们还表明,它描述了幂律随机带矩阵模型的特征状态的平均纠缠熵(在DELACALIZED SERCIME中),并且与在Quasimomentum空间中表现出定位的二次模型的结果相同,但并不相同。
The eigenstate entanglement entropy has been recently shown to be a powerful tool to distinguish integrable from generic quantum-chaotic models. In integrable models, a unique feature of the average eigenstate entanglement entropy (over all Hamiltonian eigenstates) is that the volume-law coefficient depends on the subsystem fraction. Hence, it deviates from the maximal (subsystem fraction independent) value encountered in quantum-chaotic models. Using random matrix theory for quadratic Hamiltonians, we obtain a closed-form expression for the average eigenstate entanglement entropy as a function of the subsystem fraction. We test its correctness against numerical results for the quadratic Sachdev-Ye-Kitaev model. We also show that it describes the average entanglement entropy of eigenstates of the power-law random banded matrix model (in the delocalized regime), and that it is close but not the same as the result for quadratic models that exhibit localization in quasimomentum space.