论文标题

确定性混乱和浮雕CFT中的分形熵缩放

Deterministic chaos and fractal entropy scaling in Floquet CFT

论文作者

Ageev, Dmitry S., Bagrov, Andrey A., Iliasov, Askar A.

论文摘要

在本文中,我们研究了2D Floquet共形场理论,其中外部周期性驾驶由迭代的逻辑图或帐篷图描述。这些地图是表现出订单 - chaos跃迁的动态系统的典型示例,我们表明,由于这种驾驶,当相应的动力系统接近混乱的状态时,纠缠熵缩放会发展出分形特征。对于逻辑图设置的驾驶,分形贡献占主导地位,使子系统大小的纠缠熵高度振荡。

In this paper, we study 2d Floquet conformal field theory, where the external periodic driving is described by iterated logistic or tent maps. These maps are known to be typical examples of dynamical systems exhibiting the order-chaos transition, and we show that, as a result of such driving, the entanglement entropy scaling develops fractal features when the corresponding dynamical system approaches the chaotic regime. For the driving set by the logistic map, fractal contribution to the scaling dominates, making entanglement entropy highly oscillating function of the subsystem size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源