论文标题

具有自适应光学的天文学的盲解卷积:参数边际方法

Blind deconvolution in astronomy with adaptive optics: the parametric marginal approach

论文作者

Fétick, Romain, Mugnier, Laurent, Fusco, Thierry, Neichel, Benoit

论文摘要

自适应光学器件(AO)校正图像后处理的主要局限性之一是缺乏对系统点扩散函数(PSF)的知识。 PSF并不总是作为在孤立点(如星星)等孤立点上的直接成像可用。它使用AO遥测的预测也受到严重的局限性,需要复杂但不完全运行的算法。一个非常有吸引力的解决方案包括使用科学图像本身的直接PSF估计,这要归功于盲人或近视后处理方法。我们证明,当执行对象和PSF参数的联合恢复时,这种方法受到严重限制。作为替代方案,我们在这里提出了一个边缘化的PSF识别,该识别克服了这一限制。然后将PSF用于图像后处理。在这里,我们关注Deconvolution,这是一种恢复对象的后处理技术,给定图像和PSF。我们表明,边缘化估计的PSF提供了良好的质量反卷积。边缘化的PSF估计和反卷积的完整过程构成了一种成功的盲卷技术。它在模拟数据上进行了测试以衡量其性能。还通过VLT/Sphere/Zimpol在小行星4-Vesta的实验自适应光学图像上进行了测试,以证明应用于天上数据。

One of the major limitations of adaptive optics (AO) corrected image post-processing is the lack of knowledge on the system point spread function (PSF). The PSF is not always available as a direct imaging on isolated point like objects such as stars. Its prediction using AO telemetry also suffers from serious limitations and requires complex and yet not fully operational algorithms. A very attractive solution consists in a direct PSF estimation using the scientific images themselves thanks to blind or myopic post-processing approaches. We demonstrate that such approaches suffer from severe limitations when a joint restitution of object and PSF parameters is performed. As an alternative we propose here a marginalized PSF identification that overcomes this limitation. Then the PSF is used for image post-processing. Here we focus on deconvolution, a post-processing technique to restore the object, given the image and the PSF. We show that the PSF estimated by marginalisation provides good quality deconvolution. The full process of marginalized PSF estimation and deconvolution constitutes a successful blind deconvolution technique. It is tested on simulated data to measure its performance. It is also tested on experimental adaptive optics images of the asteroid 4-Vesta by VLT/SPHERE/Zimpol to demonstrate application to on-sky data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源