论文标题

“然后他们死了”:使用动作序列进行数据驱动,上下文意识到的游戏分析

"And then they died": Using Action Sequences for Data Driven,Context Aware Gameplay Analysis

论文作者

Kleinman, Erica, Ahmad, Sabbir, Teng, Zhaoqing, Bryant, Andy, Nguyen, Truong-Huy D., Harteveld, Casper, El-Nasr, Magy Seif

论文摘要

许多成功的游戏在很大程度上依赖数据分析来了解玩家并为设计提供信息。流行的方法专注于机器学习和汇总数据的统计分析。虽然有效提取有关玩家动作的信息,但有关这些动作何时以及如何丢失的许多上下文被丢失。定性方法使研究人员可以检查上下文并获得有关玩家行为背后的目标和动机的有意义的解释,但很难扩展。在本文中,我们通过将两种现有方法结合起来,以先前的工作为基础:交互式行为分析(IBA)和序列分析(SA),以创建一种新颖的,混合的方法,人类在环境数据分析方法中,使用行为标签和可视化来允许分析人员以上下文敏感,可扩展性和一般性的方式来检查分析师的行为。我们介绍了该方法以及一个案例研究,演示了如何在流行的《古代人2》(DOTA 2)的多人游戏防御中分析团队合作的行为模式。

Many successful games rely heavily on data analytics to understand players and inform design. Popular methodologies focus on machine learning and statistical analysis of aggregated data. While effective in extracting information regarding player action, much of the context regarding when and how those actions occurred is lost. Qualitative methods allow researchers to examine context and derive meaningful explanations about the goals and motivations behind player behavior, but are difficult to scale. In this paper, we build on previous work by combining two existing methodologies: Interactive Behavior Analytics (IBA) and sequence analysis (SA), in order to create a novel, mixed methods, human-in-the-loop data analysis methodology that uses behavioral labels and visualizations to allow analysts to examine player behavior in a way that is context sensitive, scalable, and generalizable. We present the methodology along with a case study demonstrating how it can be used to analyze behavioral patterns of teamwork in the popular multiplayer game Defense of the Ancients 2 (DotA 2).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源