论文标题

使用内核密度估计的任务不合时式检测

Task-agnostic Out-of-Distribution Detection Using Kernel Density Estimation

论文作者

Erdil, Ertunc, Chaitanya, Krishna, Karani, Neerav, Konukoglu, Ender

论文摘要

近年来,研究人员提出了许多成功的方法来执行深神经网络(DNNS)中的分布(OOD)检测。到目前为止,高度准确的方法的范围仅限于图像级分类任务。但是,尝试使用超出分类的通常适用方法并没有达到相似的性能。在本文中,我们通过提出一种简单但有效的任务不合时宜的OOD检测方法来解决此限制。我们通过在训练数据集上执行内核密度估计(KDE)来估计预训练DNN的中间特征的概率密度函数(PDF)。由于将KDE直接应用于特征地图受到其高维度的阻碍,因此我们使用一组低维边缘化的KDE模型,而不是单个高维度。在测试时,我们在测试样本上评估了PDF,并产生表明样本为OOD的置信度评分。 KDE的使用消除了对基础特征PDF进行简化的假设的需求,并使提出的方法任务无关。我们使用基准数据集进行OOD检测,对分类任务进行广泛的实验。此外,我们使用脑部MRI数据集对医学图像分割任务进行实验。结果表明,所提出的方法在分类和分割任务中始终达到高OOD检测性能,并在几乎所有情况下都改善了最新的。代码可在\ url {https://github.com/eerdil/task_agnostic_ood}获得代码

In the recent years, researchers proposed a number of successful methods to perform out-of-distribution (OOD) detection in deep neural networks (DNNs). So far the scope of the highly accurate methods has been limited to image level classification tasks. However, attempts for generally applicable methods beyond classification did not attain similar performance. In this paper, we address this limitation by proposing a simple yet effective task-agnostic OOD detection method. We estimate the probability density functions (pdfs) of intermediate features of a pre-trained DNN by performing kernel density estimation (KDE) on the training dataset. As direct application of KDE to feature maps is hindered by their high dimensionality, we use a set of lower-dimensional marginalized KDE models instead of a single high-dimensional one. At test time, we evaluate the pdfs on a test sample and produce a confidence score that indicates the sample is OOD. The use of KDE eliminates the need for making simplifying assumptions about the underlying feature pdfs and makes the proposed method task-agnostic. We perform extensive experiments on classification tasks using benchmark datasets for OOD detection. Additionally, we perform experiments on medical image segmentation tasks using brain MRI datasets. The results demonstrate that the proposed method consistently achieves high OOD detection performance in both classification and segmentation tasks and improves state-of-the-art in almost all cases. Code is available at \url{https://github.com/eerdil/task_agnostic_ood}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源