论文标题

设置分布网络:图像集的生成模型

Set Distribution Networks: a Generative Model for Sets of Images

论文作者

Zhai, Shuangfei, Talbott, Walter, Bautista, Miguel Angel, Guestrin, Carlos, Susskind, Josh M.

论文摘要

具有共享特征的图像自然形成集合。例如,在面部验证基准中,相同身份表格集的图像集。对于生成模型,处理集合的标准方式是将每个设置表示为一个热量向量,并学习有条件的生成模型$ P(\ Mathbf {x} | \ Mathbf {y})$。该表示形式假定集合的数量有限且已知,因此集合上的分布将减少到简单的多项式分布。相比之下,我们研究了一个更通用的问题,其中集合数量较大且未知。我们介绍了Set分销网络(SDNS),这是一个新颖的框架,该框架学会了自动码并自由生成集合。我们通过共同学习集合编码器,设置鉴别器,设置生成器并设置先验来实现这一目标。我们证明,SDN能够重建图像集,这些图像集可在我们的基准数据集中保留输入的显着属性,并且也能够生成新颖的对象/身份。我们通过预先训练的3D重建网络和面部验证网络将SDN生成的集合作为评估生成的图像集质量的新方法。

Images with shared characteristics naturally form sets. For example, in a face verification benchmark, images of the same identity form sets. For generative models, the standard way of dealing with sets is to represent each as a one hot vector, and learn a conditional generative model $p(\mathbf{x}|\mathbf{y})$. This representation assumes that the number of sets is limited and known, such that the distribution over sets reduces to a simple multinomial distribution. In contrast, we study a more generic problem where the number of sets is large and unknown. We introduce Set Distribution Networks (SDNs), a novel framework that learns to autoencode and freely generate sets. We achieve this by jointly learning a set encoder, set discriminator, set generator, and set prior. We show that SDNs are able to reconstruct image sets that preserve salient attributes of the inputs in our benchmark datasets, and are also able to generate novel objects/identities. We examine the sets generated by SDN with a pre-trained 3D reconstruction network and a face verification network, respectively, as a novel way to evaluate the quality of generated sets of images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源