论文标题

强大的组子空间恢复:一种多模式数据融合的新方法

Robust Group Subspace Recovery: A New Approach for Multi-Modality Data Fusion

论文作者

Ghanem, Sally, Panahi, Ashkan, Krim, Hamid, Kerekes, Ryan A.

论文摘要

最近将强大的子空间恢复(Ruso)算法作为一种原则性且数值有效的算法引入,该算法在数据中存在,它展现了基础的子空间(UOS)结构。与简单的线性模型相比,子空间(UOS)的联合能够识别数据集中更复杂的趋势。我们基于并扩大了措施,以分别分别延长不同数据模式的结构。我们提出了一种基于组稀疏性的新型多模式数据融合方法,我们称之为强大的组子空间恢复(ROGSURE)。依靠Bi-Sparsity追求范式和非平滑优化技术,引入的框架从不同的数据模式中学习了时间序列的新联合表示,尊重基础UOS模型。随后,我们整合了所获得的结构以形成统一的子空间结构。所提出的方法利用不同模态数据之间的结构依赖性,以聚集关联的目标对象。从音频和磁数据实验中未标记的传感器数据融合的结果表明,我们的方法与其他最先进的子空间聚类方法具有竞争力。所得的UOS结构用于对新观察到的数据点进行分类,突出了所提出的方法的抽象能力。

Robust Subspace Recovery (RoSuRe) algorithm was recently introduced as a principled and numerically efficient algorithm that unfolds underlying Unions of Subspaces (UoS) structure, present in the data. The union of Subspaces (UoS) is capable of identifying more complex trends in data sets than simple linear models. We build on and extend RoSuRe to prospect the structure of different data modalities individually. We propose a novel multi-modal data fusion approach based on group sparsity which we refer to as Robust Group Subspace Recovery (RoGSuRe). Relying on a bi-sparsity pursuit paradigm and non-smooth optimization techniques, the introduced framework learns a new joint representation of the time series from different data modalities, respecting an underlying UoS model. We subsequently integrate the obtained structures to form a unified subspace structure. The proposed approach exploits the structural dependencies between the different modalities data to cluster the associated target objects. The resulting fusion of the unlabeled sensors' data from experiments on audio and magnetic data has shown that our method is competitive with other state of the art subspace clustering methods. The resulting UoS structure is employed to classify newly observed data points, highlighting the abstraction capacity of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源