论文标题
使用线性和一个隐藏的层神经网络传输学习的最小下限
Minimax Lower Bounds for Transfer Learning with Linear and One-hidden Layer Neural Networks
论文作者
论文摘要
转移学习已成为一种强大的技术,用于改善在可能稀缺标记的培训数据的新领域的机器学习模型的性能。在这种方法中,经过培训的模型,该任务可获得大量标记的培训数据,用作训练模型在相关目标任务上的起点,只有很少的标记培训数据。尽管转移学习方法最近的经验成功,但对转移学习的好处和基本局限性知之甚少。在本文中,我们开发了一个统计最小框架,以通过线性和一个隐藏的层神经网络模型在回归的背景下表征转移学习的基本限制。具体而言,我们为任何算法都可以通过标记的源和目标数据数量以及源和目标任务之间相似性的适当概念来实现目标概括误差的较低限制。我们的下限为转移学习的益处和局限性提供了新的见解。我们通过各种实验进一步证实了我们的理论发现。
Transfer learning has emerged as a powerful technique for improving the performance of machine learning models on new domains where labeled training data may be scarce. In this approach a model trained for a source task, where plenty of labeled training data is available, is used as a starting point for training a model on a related target task with only few labeled training data. Despite recent empirical success of transfer learning approaches, the benefits and fundamental limits of transfer learning are poorly understood. In this paper we develop a statistical minimax framework to characterize the fundamental limits of transfer learning in the context of regression with linear and one-hidden layer neural network models. Specifically, we derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data as well as appropriate notions of similarity between the source and target tasks. Our lower bound provides new insights into the benefits and limitations of transfer learning. We further corroborate our theoretical finding with various experiments.