论文标题
自我发挥的增强医疗保健系统中的患者旅程的理解
Self-Attention Enhanced Patient Journey Understanding in Healthcare System
论文作者
论文摘要
了解患者在医疗保健系统中的旅程是针对各种基于AI的医疗保健应用的基本预阳性任务。该任务旨在学习一个信息的表示,可以在医疗事件及其内部实体之间全面编码隐藏的依赖关系,然后使用编码输出可以极大地使下游应用程序驱动的任务受益。随着时间的推移,患者旅程是一系列电子健康记录(EHR)的序列,该序列在多个级别上组织:患者,探视和医疗法规。患者旅程理解的主要挑战是设计有效的编码机制,该机制可以通过时间顺序访问和一组医疗代码正确处理上述多级结构化患者旅程数据。本文提出了一种新颖的自我发育机制,可以同时捕获患者旅行中隐藏的上下文和时间关系。多层自我发项网络(MUSANET)的专门设计,用于学习用来长期活动的患者旅行的表示。使用来自EHR的训练数据以端到端的方式训练Musanet。我们评估了通过现实基准数据集对两个医疗应用程序任务的疗效。结果表明,所提出的Musanet产生的质量比最先进的基线方法更高。源代码可在https://github.com/xueping/musanet中找到。
Understanding patients' journeys in healthcare system is a fundamental prepositive task for a broad range of AI-based healthcare applications. This task aims to learn an informative representation that can comprehensively encode hidden dependencies among medical events and its inner entities, and then the use of encoding outputs can greatly benefit the downstream application-driven tasks. A patient journey is a sequence of electronic health records (EHRs) over time that is organized at multiple levels: patient, visits and medical codes. The key challenge of patient journey understanding is to design an effective encoding mechanism which can properly tackle the aforementioned multi-level structured patient journey data with temporal sequential visits and a set of medical codes. This paper proposes a novel self-attention mechanism that can simultaneously capture the contextual and temporal relationships hidden in patient journeys. A multi-level self-attention network (MusaNet) is specifically designed to learn the representations of patient journeys that is used to be a long sequence of activities. The MusaNet is trained in end-to-end manner using the training data derived from EHRs. We evaluated the efficacy of our method on two medical application tasks with real-world benchmark datasets. The results have demonstrated the proposed MusaNet produces higher-quality representations than state-of-the-art baseline methods. The source code is available in https://github.com/xueping/MusaNet.