论文标题
通过GAN发电机学习高分辨率特定域的表示
Learning High-Resolution Domain-Specific Representations with a GAN Generator
论文作者
论文摘要
近年来,视觉数据的生成模型取得了长足的进步,现在它们能够产生高质量和多样性的图像。在这项工作中,我们研究了由GAN发电机学到的表示形式。首先,我们证明可以使用轻量级解码器轻松地将这些表示形式投影到语义分割图上。我们发现,只需从几个带注释的图像中就可以学到这种语义投影。基于这一发现,我们提出了layermatch方案,以近似可用于无监督域特异性审计的GAN发电机的表示。当提供少量标记的数据以及来自同一域的大型未标记数据集时,我们将考虑半监督的学习方案。我们发现,与标准监督的ImageNet预处理相比,使用Layermatch预先获得的主链可以提高准确性。此外,这种简单的方法还优于最新的半监督语义分割方法,这些方法在训练过程中使用标记和未标记的数据。复制我们实验的源代码将在出版时提供。
In recent years generative models of visual data have made a great progress, and now they are able to produce images of high quality and diversity. In this work we study representations learnt by a GAN generator. First, we show that these representations can be easily projected onto semantic segmentation map using a lightweight decoder. We find that such semantic projection can be learnt from just a few annotated images. Based on this finding, we propose LayerMatch scheme for approximating the representation of a GAN generator that can be used for unsupervised domain-specific pretraining. We consider the semi-supervised learning scenario when a small amount of labeled data is available along with a large unlabeled dataset from the same domain. We find that the use of LayerMatch-pretrained backbone leads to superior accuracy compared to standard supervised pretraining on ImageNet. Moreover, this simple approach also outperforms recent semi-supervised semantic segmentation methods that use both labeled and unlabeled data during training. Source code for reproducing our experiments will be available at the time of publication.