论文标题

jd.com上的视觉吸引CTR预测的类别特定CNN

Category-Specific CNN for Visual-aware CTR Prediction at JD.com

论文作者

Liu, Hu, Lu, Jing, Yang, Hao, Zhao, Xiwei, Xu, Sulong, Peng, Hao, Zhang, Zehua, Niu, Wenjie, Zhu, Xiaokun, Bao, Yongjun, Yan, Weipeng

论文摘要

作为中国最大的B2C电子商务平台之一,JD COM还为领先的广告系统提供了支持,为数百万的广告客户提供了指尖连接到数亿客户。在我们的系统中以及大多数电子商务方案中,广告都在图像中显示。这使视觉吸引的点击介绍了速率(CTR)对业务有效性和用户体验的关键重要性的预测。现有的算法通常使用现成的卷积神经网络(CNN)提取视觉特征,并为最终预测的CTR融合了视觉和非视觉特征。尽管经过广泛的研究,该领域仍然面临两个关键挑战。首先,尽管在离线研究中取得了令人鼓舞的进展,但由于对有效的端到端培训和低延迟在线服务的严格要求,在真实系统中应用CNN仍然是不平凡的。其次,现成的CNN和晚期融合体系结构是次优的。具体而言,现成的CNN是为分类而设计的,因此切勿将类别作为输入功能。在电子商务中,类别被精确标记并包含有助于视觉建模的丰富视觉先验。这些CNN不了解AD类别,可能会提取一些不必要的类别无关的功能,从而浪费了CNN的表达能力有限。为了克服这两个挑战,我们建议针对CTR预测的特定类别CNN(CSCNN)。 CSCNN早期将类别知识与每个卷积层上轻加权的注意模块结合在一起。这使得CSCNN能够提取有益于CTR预测的特定于表达类别的视觉模式。基准测试的离线实验和JD的100亿级实际生产数据集以及在线A/B测试表明,CSCNN的表现都优于最先进的算法。

As one of the largest B2C e-commerce platforms in China, JD com also powers a leading advertising system, serving millions of advertisers with fingertip connection to hundreds of millions of customers. In our system, as well as most e-commerce scenarios, ads are displayed with images.This makes visual-aware Click Through Rate (CTR) prediction of crucial importance to both business effectiveness and user experience. Existing algorithms usually extract visual features using off-the-shelf Convolutional Neural Networks (CNNs) and late fuse the visual and non-visual features for the finally predicted CTR. Despite being extensively studied, this field still face two key challenges. First, although encouraging progress has been made in offline studies, applying CNNs in real systems remains non-trivial, due to the strict requirements for efficient end-to-end training and low-latency online serving. Second, the off-the-shelf CNNs and late fusion architectures are suboptimal. Specifically, off-the-shelf CNNs were designed for classification thus never take categories as input features. While in e-commerce, categories are precisely labeled and contain abundant visual priors that will help the visual modeling. Unaware of the ad category, these CNNs may extract some unnecessary category-unrelated features, wasting CNN's limited expression ability. To overcome the two challenges, we propose Category-specific CNN (CSCNN) specially for CTR prediction. CSCNN early incorporates the category knowledge with a light-weighted attention-module on each convolutional layer. This enables CSCNN to extract expressive category-specific visual patterns that benefit the CTR prediction. Offline experiments on benchmark and a 10 billion scale real production dataset from JD, together with an Online A/B test show that CSCNN outperforms all compared state-of-the-art algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源