论文标题

MediaPipe Hands:启用实时手动跟踪

MediaPipe Hands: On-device Real-time Hand Tracking

论文作者

Zhang, Fan, Bazarevsky, Valentin, Vakunov, Andrey, Tkachenka, Andrei, Sung, George, Chang, Chuo-Ling, Grundmann, Matthias

论文摘要

我们提出了一个实时的机上跟踪管道,该管道可预测用于AR/VR应用的单RGB摄像机的手骨架。管道由两个模型组成:1)棕榈探测器,2)手动地标模型。它是通过MediaPipe实施的,MediaPipe是构建跨平台ML解决方案的框架。提出的模型和管道体系结构表明了移动GPU和高预测质量的实时推理速度。 MediaPipe Hands在https://mediapipe.dev上开源。

We present a real-time on-device hand tracking pipeline that predicts hand skeleton from single RGB camera for AR/VR applications. The pipeline consists of two models: 1) a palm detector, 2) a hand landmark model. It's implemented via MediaPipe, a framework for building cross-platform ML solutions. The proposed model and pipeline architecture demonstrates real-time inference speed on mobile GPUs and high prediction quality. MediaPipe Hands is open sourced at https://mediapipe.dev.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源