论文标题

天空优化:弱光摄影中天空的语义意识图像处理

Sky Optimization: Semantically aware image processing of skies in low-light photography

论文作者

Liba, Orly, Cai, Longqi, Tsai, Yun-Ta, Eban, Elad, Movshovitz-Attias, Yair, Pritch, Yael, Chen, Huizhong, Barron, Jonathan T.

论文摘要

天空是照片外观的主要组成部分,其颜色和色调可以强烈影响图片的情绪。在夜间摄影中,天空也可能遭受噪音和颜色伪像。因此,有强烈的渴望与现场的其余部分隔离地处理天空以获得最佳外观。在这项工作中,我们提出了一种自动化方法,该方法可以作为摄像机管道的一部分运行,以创建准确的天空alpha面具并使用它们来改善天空的外观。我们的方法在移动设备上的每张图像不到半秒的时间进行端到端的天空优化。我们介绍了一种创建准确的天掩模数据集的方法,该方法基于部分注释的图像,该图像被我们修改的加权引导过滤器所覆盖和完善。我们使用此数据集训练神经网络进行语义天空细分。由于移动设备的计算和功率限制,因此以低图像分辨率执行天空分割。我们改进的加权引导过滤器用于边缘感知的UP采样,以将Alpha面罩的大小调整到更高的分辨率。使用此详细的面具,我们将自动隔离地应用后处理步骤,例如自动在空间上变化的白色体重,亮度调整,对比度增强和降低降噪。

The sky is a major component of the appearance of a photograph, and its color and tone can strongly influence the mood of a picture. In nighttime photography, the sky can also suffer from noise and color artifacts. For this reason, there is a strong desire to process the sky in isolation from the rest of the scene to achieve an optimal look. In this work, we propose an automated method, which can run as a part of a camera pipeline, for creating accurate sky alpha-masks and using them to improve the appearance of the sky. Our method performs end-to-end sky optimization in less than half a second per image on a mobile device. We introduce a method for creating an accurate sky-mask dataset that is based on partially annotated images that are inpainted and refined by our modified weighted guided filter. We use this dataset to train a neural network for semantic sky segmentation. Due to the compute and power constraints of mobile devices, sky segmentation is performed at a low image resolution. Our modified weighted guided filter is used for edge-aware upsampling to resize the alpha-mask to a higher resolution. With this detailed mask we automatically apply post-processing steps to the sky in isolation, such as automatic spatially varying white-balance, brightness adjustments, contrast enhancement, and noise reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源