论文标题

Markovian RNN:一个自适应时间序列预测网络,基于HMM的开关针对非组织环境

Markovian RNN: An Adaptive Time Series Prediction Network with HMM-based Switching for Nonstationary Environments

论文作者

Ilhan, Fatih, Karaahmetoglu, Oguzhan, Balaban, Ismail, Kozat, Suleyman Serdar

论文摘要

我们研究了非组织顺序数据的非线性回归。在大多数现实生活中的应用程序,例如融资,零售,能源和经济等商业领域,时间播放数据由于基础系统的时间变化而表现出非平稳性。我们介绍了一种新颖的复发性神经网络(RNN)体系结构,该体系结构以马尔可夫的方式自适应地在内部制度之间切换,以模拟给定数据的非平稳性。我们的模型Markovian RNN采用了一个隐藏的马尔可夫模型(HMM)进行制度转换,在该模型中,每个制度都独立控制复发单元的隐藏状态过渡。我们以端到端的方式共同优化整个网络。我们证明了与香草RNN和常规方法(例如,通过合成和现实生活数据集的广泛实验)相比,具有显着的性能增长。我们还解释了推断的参数和制度信念值,以分析给定序列的基本动力学。

We investigate nonlinear regression for nonstationary sequential data. In most real-life applications such as business domains including finance, retail, energy and economy, timeseries data exhibits nonstationarity due to the temporally varying dynamics of the underlying system. We introduce a novel recurrent neural network (RNN) architecture, which adaptively switches between internal regimes in a Markovian way to model the nonstationary nature of the given data. Our model, Markovian RNN employs a hidden Markov model (HMM) for regime transitions, where each regime controls hidden state transitions of the recurrent cell independently. We jointly optimize the whole network in an end-to-end fashion. We demonstrate the significant performance gains compared to vanilla RNN and conventional methods such as Markov Switching ARIMA through an extensive set of experiments with synthetic and real-life datasets. We also interpret the inferred parameters and regime belief values to analyze the underlying dynamics of the given sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源