论文标题

多物理和多尺度系统的界面学习

Interface learning of multiphysics and multiscale systems

论文作者

Ahmed, Shady E., San, Omer, Kara, Kursat, Younis, Rami, Rasheed, Adil

论文摘要

复杂的自然或工程系统包括多个特征量表,多个时空域,甚至包括多个物理封闭法。为了应对此类挑战,我们引入了一个界面学习范式,并根据内存嵌入进行数据驱动的闭合方法,以在接口处提供物理正确的边界条件。为了通过考虑影响和波浪结构的领域来启用双曲线系统的接口学习,我们提出了朝向物理知识领域的分解的前风学习的概念。对于一组规范的说明性问题,显示了建议的方法的承诺。我们强调,高性能计算环境可以从这种方法中受益,以降低新兴机器学习准备好的异质平台的处理单元之间的沟通成本。

Complex natural or engineered systems comprise multiple characteristic scales, multiple spatiotemporal domains, and even multiple physical closure laws. To address such challenges, we introduce an interface learning paradigm and put forth a data-driven closure approach based on memory embedding to provide physically correct boundary conditions at the interface. To enable the interface learning for hyperbolic systems by considering the domain of influence and wave structures into account, we put forth the concept of upwind learning towards a physics-informed domain decomposition. The promise of the proposed approach is shown for a set of canonical illustrative problems. We highlight that high-performance computing environments can benefit from this methodology to reduce communication costs among processing units in emerging machine learning ready heterogeneous platforms toward exascale era.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源